Generic Processing of GPS RO and Microwave Occultations

Stig Syndergaard
Danish Meteorological Institute, Copenhagen, Denmark

Bending angle \rightarrow refractivity

$\alpha(a)$ \downarrow

Abel integral transform (e.g., Fjeldbo 1971)

$$
\begin{gathered}
\alpha(a)=-2 a \int_{r_{0}}^{\infty} \frac{\mathrm{d} \ln n / \mathrm{d} r}{\sqrt{n^{2} r^{2}-a^{2}}} \mathrm{~d} r \quad \Longleftrightarrow \quad n\left(r_{0}\right)=\exp \left(\frac{1}{\pi} \int_{a}^{\infty} \frac{\alpha(x)}{\sqrt{x^{2}-a^{2}}} \mathrm{~d} x\right) \\
r_{0}=\frac{a}{n\left(r_{0}\right)} \quad, \quad N\left(r_{0}\right)=10^{6} \times\left(n\left(r_{0}\right)-1\right)
\end{gathered}
$$

- The Abel integral transform relies on the assumption of spherical symmetry
- It provides a simple and unique solution to an otherwise underdetermined inverse problem
- A few issues: 1) ionospheric correction; 2) statistical optimization - how to handle the upper boundary

lonospheric correction of bending angles

The ionosphere-free bending angle is formed from the derived bending angles at the same impact parameter (Vorob'ev and Krasil'nikova 1994):

$$
\alpha(a)=\frac{f_{1}^{2} \alpha_{1}(a)-f_{2}^{2} \alpha_{2}(a)}{f_{1}^{2}-f_{2}^{2}}
$$

- In practice one has to consider filtering of small-scale ionospheric residuals and excessive L2 noise (Sokolovskiy, 2009)
- The GRAS SAF uses a so-called optimal linear combination aproach (Gorbunov, 2002), combining ionospheric correction and statistical optimization in a Bayesian framework

Statistical optimization

- Formally, we need bending angles to infinite altitudes in order to derive the refractivity (of course we don't have that)
- Bending angles are contaminated with thermal noise and residual noise from ionospheric turbulence
- Fractionally the noise increases exponentially with altitude rendering the bending angle useless at some altitude and above

Optimal estimation of bending angle:

$$
\tilde{\alpha}(a)=\alpha_{\mathrm{bg}}(a)+\frac{\sigma_{\mathrm{bg}}^{2}}{\sigma_{\mathrm{bg}}^{2}+\sigma_{\mathrm{obs}}^{2}}\left[\alpha(a)-\alpha_{\mathrm{bg}}(a)\right]
$$

α_{bg} is estimated from a climatological model or other $\sigma_{\text {obs }}$ may be evaluated from the data above the stratosphere $\sigma_{\text {bg }}$ may be fixed (e.g., 20\%) or estimated

The GRAS SAF approach

- Based on a spectral representation of the MSIS climatological model transformed to bending angle space
- Global search in model space + scaling and offset (Gobiet and Kirchengast, 2004; Lohmann, 2005)
- Least squares fit of $A \alpha_{\text {gmsis }}^{B}$ to the observed (non-optimized) bending angle between 40 and 60 km , and then...

$$
\min \left[(\ln A)^{2}+(B-1)^{2}\right]_{\text {global search }} \quad \Rightarrow \quad \alpha_{\mathrm{bg}}=A \alpha_{\text {gmsis }}^{B}
$$

Optimal linear combination:

$$
\begin{aligned}
& \binom{\alpha_{1}}{\alpha_{2}}=\mathbf{K}\binom{\tilde{\alpha}}{\Delta \alpha_{\mathrm{I}}} \quad, \quad \mathbf{K}=\left(\begin{array}{cc}
1 & f_{2}^{2} /\left(f_{1}^{2}-f_{2}^{2}\right) \\
1 & f_{1}^{2} /\left(f_{1}^{2}-f_{2}^{2}\right)
\end{array}\right) \\
& \binom{\tilde{\alpha}}{\Delta \alpha_{\mathrm{I}}}=\binom{\alpha_{\mathrm{bg}}}{\left\langle\Delta \alpha_{\mathrm{I}}\right\rangle}+\mathbf{K}^{\dagger}\binom{\alpha_{1}-\alpha_{\mathrm{bg}}-\left\langle\Delta \alpha_{\mathrm{I}}\right\rangle f_{2}^{2} /\left(f_{1}^{2}-f_{2}^{2}\right)}{\alpha_{2}-\alpha_{\mathrm{bg}}-\left\langle\Delta \alpha_{\mathrm{I}}\right\rangle f_{1}^{2} /\left(f_{1}^{2}-f_{2}^{2}\right)}
\end{aligned}
$$

First ten days of April, 2009 (observations - ECMWF forecasts)

Refractivity \rightarrow pressure \& temperature

Refractivity equation:

$$
N \approx 77.6 \frac{p}{T}+3.73 \times 10^{5} \frac{e}{T^{2}}
$$

- Two terms: a dry (or hydrostatic) term and a wet term
- The wet term can be neglected at temperatures less than ~ 240 K (i.e., at few kilometers above the surface at high latitudes and above $\sim 10 \mathrm{~km}$ at tropical latitudes)

Neglecting the wet term:

$$
N(r) \rightarrow \begin{array}{ll}
N=77.6 \frac{p}{T} \quad, \quad p=\rho R_{\mathrm{d}} T \\
\frac{\mathrm{~d} p}{\mathrm{~d} z}=-\rho g \quad, \quad z=r-r_{\mathrm{curv}}
\end{array} \rightarrow p(z), T(z)
$$

Deriving temperature and water vapor

1. Include additional information about the actual temperature profile and solve directly for water vapor (iterative procedure)
2. One-dimensional variational technique optimally combining the refractivity profile with information from an NWP model
3. The 'COSMIC approach'

Method number 1:

$$
\begin{gathered}
N(z), T_{\text {apriori }}(z) \\
\downarrow
\end{gathered}
$$

$$
\begin{gathered}
e=T^{2} \frac{N-77.6\left(p_{\mathrm{d}}+e\right) / T}{3.73 \times 10^{5}} \quad, \quad \frac{\mathrm{~d}\left(p_{\mathrm{d}}+e\right)}{\mathrm{d} z}=-\left(\rho_{\mathrm{d}}+\rho_{\mathrm{w}}\right) g \\
p_{\mathrm{d}}=\rho_{\mathrm{d}} R_{\mathrm{d}} T \quad, \quad e=\rho_{\mathrm{w}} R_{\mathrm{w}} T
\end{gathered}
$$

$$
e(z), p_{\mathrm{d}}(z)
$$

An optimal solution toward T, p, and e

Method number 2 (variational retrieval):

- Include information about errors in a priori temperature, pressure and water vapor, as well as errors in the observed refractivity

$$
\begin{gathered}
N(z), T_{\text {apriori }}(z), p_{\text {apriori }}(z), e_{\text {apriori }}(z) \\
\downarrow
\end{gathered}
$$

Minimizing the following cost function:

$$
J(\mathbf{x})=\left(\mathbf{x}-\mathbf{x}_{\mathrm{b}}\right)^{\mathrm{T}} \mathbf{B}^{-1}\left(\mathbf{x}-\mathbf{x}_{\mathrm{b}}\right)+\left(\mathbf{N}_{\mathrm{obs}}-\mathbf{N}(\mathbf{x})\right)^{\mathrm{T}} \mathbf{R}^{-1}\left(\mathbf{N}_{\mathrm{obs}}-\mathbf{N}(\mathbf{x})\right)
$$

x is the state vector to be solved for
x_{b} is the a priori state vector
$\mathbf{N}(\mathbf{x})$ is the refractivity equation
\mathbf{B} is the a priori error covariance matrix
\mathbf{R} is the observation + representativeness error covariance matrix

$$
\begin{gathered}
\stackrel{\downarrow}{ } T(z), p(z), e(z)
\end{gathered}
$$

The GRAS SAF approach

- Observations and forecast weighted according to their error covariance
- An optimal mixture between model and observation
- One disadvantage: retrieved temperature and water vapor inconsistent with observed refractivity

The COSMIC approach

Method number 3 (COSMIC approach):

- Gives much more weight to the observations
- Seeks to minimize the influence from NWP fields, but still separate out temperature and water vapor
- Solution (almost) consistent with observed refractivity
- Retrieved temperature (almost) in-line with dry temperature where water vapor is insignificant
- Observed small-scale structure is preserved in the solution

A similar alternative - taking the full step

- Give full weight to the observations (zero error; $\mathbf{S}_{\mathrm{O}}=0$)
- Solution fully consistent with observed refractivity ($N_{\text {sol }}=N_{\text {obs }}$)
- Retrieved temperature fully in-line with dry temperature where water vapor is insignificant ($T_{\text {sol }}=T_{\text {dry }}$ where $e=0$)
- Information content from observation fully preserved
- NWP model add only information on the relative contributions of dry and wet terms, based on its representation of these variables $\left(\mathrm{x}_{\mathrm{B}}\right)$ and their error co-variances $\left(\mathrm{S}_{\mathrm{B}}\right)$
- NWP analyses (where the specific RO profile presumably has already been assimilated) can be used as X_{B} without including the information from the RO data twice (since the RO in itself does not contain information about the relative contributions of dry and wet terms)

Standard 1Dvar: $\mathbf{x}=\mathbf{x}_{\mathrm{B}}+\mathbf{S}_{\mathrm{B}} \mathbf{K}^{\mathrm{T}}\left(\mathbf{K S}_{\mathrm{B}} \mathbf{K}^{\mathrm{T}}+\mathbf{S}_{\mathrm{O}}\right)^{-1}\left(\mathbf{y}-\mathbf{K} \mathbf{x}_{\mathrm{B}}\right) \quad$ [notation after Rodgers (2000)]
Alternative: $\mathbf{x}=\mathbf{x}_{\mathrm{B}}+\mathbf{S}_{\mathrm{B}} \mathbf{K}^{\mathrm{T}}\left(\mathbf{K S}_{\mathrm{B}} \mathbf{K}^{\mathrm{T}}\right)^{-1}\left(\mathbf{y}-\mathbf{K} \mathbf{x}_{\mathrm{B}}\right)=\mathbf{x}_{\mathrm{A}}+\mathbf{S}_{\mathrm{A}} \mathbf{K}^{\mathrm{T}}\left(\mathbf{K S}_{\mathrm{A}} \mathbf{K}^{\mathrm{T}}\right)^{-1}\left(\mathbf{y}-\mathbf{K} \mathbf{x}_{\mathrm{A}}\right)$

Microwave occultations

Atmospheric limb sounding (occultations) using multifrequency signals between LEO satellites

Observations:

1. Refraction (via phase measurements)
2. Absorption (via amplitude measurements)

Products: Profiles of temperature, pressure, water vapor, ozone, ...
Frequencies:

- 9-32 GHz and $178-183 \mathrm{GHz}$ for moisture sounding
- 184-196 GHz for ozone sounding

Absorption spectra below 200 GHz

Basic principles of the observations

Optical path:
$L=\int n \mathrm{~d} s$
Optical depth:
$\tau=\int k \mathrm{~d} s$
n is the real part of the refractive index
k is the volume absorption coefficient (related to the imaginary part of the refractive index)

Normalized intensity: $I / I_{0}=\zeta \exp (-\tau)$
The difference in optical depth, $\Delta \tau$, between two signals (at two different frequencies) is obtained by signal intensity ratioing

Basic principles of the retrieval

- Inversion to obtain n and Δk

$$
\begin{aligned}
& \begin{array}{ll}
L(t) \rightarrow \alpha(a) & \rightarrow
\end{array} \begin{array}{l}
n(r)=\exp \left(\frac{1}{\pi} \int_{a}^{\infty} \frac{\alpha(x)}{\sqrt{x^{2}-a^{2}}} \mathrm{~d} x\right) \\
I(t) \rightarrow \Delta \tau(a) \rightarrow
\end{array} \begin{array}{l}
\rightarrow n(r) \\
\Delta k(r)=-\frac{1}{\pi} \frac{\mathrm{~d} a}{\mathrm{~d} r} \int_{a}^{\infty} \frac{\mathrm{d} \Delta \tau / \mathrm{d} x}{\sqrt{x^{2}-a^{2}}} \mathrm{~d} x
\end{array} \rightarrow \Delta k(r) \\
& a=r n(r)
\end{aligned}
$$

- Solving a set of non-linear equations to obtain profiles of p, e, T

$$
\Delta k=F_{1}(p, e, T) \quad n=F_{2}(p, e, T) \quad \mathrm{d} p / \mathrm{d} z=F_{3}(p, e, T)
$$

Handling the integration to infinity

- Extending the bending angle profile; e.g., log-linear extrapolation to infinity
- Integration to some high altitude where the bending angle can be neglected (above 100 km)
- Analytical (approximate) expression assuming log-linear bending angle above $a_{\text {top }}$:

$$
\int_{a}^{\infty} \frac{\alpha(x) \mathrm{d} x}{\sqrt{x^{2}-a^{2}}} \approx \int_{a}^{a_{\mathrm{top}}} \frac{\alpha(x) \mathrm{d} x}{\sqrt{x^{2}-a^{2}}}+\frac{\alpha\left(a_{\mathrm{top}}\right) \sqrt{\pi H}}{\sqrt{a_{\mathrm{top}}+a}} \exp \left(\frac{a_{\mathrm{top}}-a}{H}\right) \operatorname{erfc}\left(\sqrt{\frac{a_{\mathrm{top}}-a}{H}}\right)
$$

- An old idea of mine: Use background/climatological bending angle defined to arbitrary high altitude (spectral representation) and apply substitution $\left(x=\sqrt{a^{2}+(c \ln y)^{2}}\right)$ to effectively integrate to infinity:

$$
\int_{a}^{\infty} \frac{\alpha(x) \mathrm{d} x}{\sqrt{x^{2}-a^{2}}}=c \int_{0}^{1} \frac{\alpha(y)}{x y} \mathrm{~d} y
$$

... and the lower limit

We rarely talk about it, but we all do something:

- $x=\sqrt{a^{2}+(c \ln y)^{2}} \Rightarrow \int_{a}^{\infty} \frac{\alpha(x) \mathrm{d} x}{\sqrt{x^{2}-a^{2}}}=c \int_{0}^{1} \frac{\alpha(y)}{x y} \mathrm{~d} y \quad,\left.\quad \frac{\alpha(y)}{x y}\right|_{y \rightarrow 0} \rightarrow 0$
- $\alpha(x)=A x+B \Rightarrow \int_{a}^{b} \frac{\alpha(x) \mathrm{d} x}{\sqrt{x^{2}-a^{2}}}=A \sqrt{b^{2}-a^{2}}+B \ln \left(\frac{b+\sqrt{b^{2}-a^{2}}}{a}\right)$
- integration by parts : $\int_{a}^{\infty} \frac{\alpha(x) \mathrm{d} x}{\sqrt{x^{2}-a^{2}}}=-\int_{a}^{\infty} \ln \left(\frac{x}{a}+\sqrt{\left(\frac{x}{a}\right)^{2}-1}\right) \frac{\mathrm{d} \alpha}{\mathrm{d} x} \mathrm{~d} x$
- $x=\sqrt{s^{2}+a^{2}} \Rightarrow \int_{a}^{\infty} \frac{\alpha(x) \mathrm{d} x}{\sqrt{x^{2}-a^{2}}}=\int_{0}^{\infty} \frac{\alpha(s) \mathrm{d} s}{\sqrt{s^{2}+a^{2}}}$
- $x=a \cosh \theta \Rightarrow \int_{a}^{\infty} \frac{\alpha(x) \mathrm{d} x}{\sqrt{x^{2}-a^{2}}}=\int_{0}^{\infty} \alpha(\theta) \mathrm{d} \theta$
- ... and the one you use...

Example from GRAS data

A closer look...

