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GPS RO measurements & processing
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Bending angle → refractivity

α(a)
↓

Abel integral transform (e.g., Fjeldbo 1971)

α(a) = −2a

∫ ∞

r0

d ln n/dr√
n2r2 − a2

dr ⇐⇒ n(r0) = exp

(
1

π

∫ ∞

a

α(x)√
x2 − a2

dx

)

r0 =
a

n(r0)
, N(r0) = 106 × (n(r0)− 1)

↓
N(r)

• The Abel integral transform relies on the assumption of spherical
symmetry

• It provides a simple and unique solution to an otherwise under-
determined inverse problem

• A few issues: 1) ionospheric correction; 2) statistical optimiza-
tion – how to handle the upper boundary



Ionospheric correction of bending angles

The ionosphere-free bending angle is formed from the derived bend-

ing angles at the same impact parameter (Vorob’ev and Krasil’nikova

1994):

α(a) =
f 2

1α1(a)− f 2
2α2(a)

f 2
1 − f 2

2

• In practice one has to consider filtering of small-scale ionospheric

residuals and excessive L2 noise (Sokolovskiy, 2009)

• The GRAS SAF uses a so-called optimal linear combination

aproach (Gorbunov, 2002), combining ionospheric correction

and statistical optimization in a Bayesian framework



Statistical optimization

• Formally, we need bending angles to infinite altitudes in order
to derive the refractivity (of course we don’t have that)

• Bending angles are contaminated with thermal noise and resid-
ual noise from ionospheric turbulence

• Fractionally the noise increases exponentially with altitude
rendering the bending angle useless at some altitude and above

Optimal estimation of bending angle:

α̃(a) = αbg(a) +
σ2

bg

σ2
bg + σ2

obs
[α(a)− αbg(a)]

αbg is estimated from a climatological model or other
σobs may be evaluated from the data above the stratosphere
σbg may be fixed (e.g., 20%) or estimated



The GRAS SAF approach

• Based on a spectral representation of the MSIS climatological
model transformed to bending angle space

• Global search in model space + scaling and offset (Gobiet and
Kirchengast, 2004; Lohmann, 2005)

• Least squares fit of AαB
gmsis to the observed (non-optimized)

bending angle between 40 and 60 km, and then. . .

min[(lnA)2 + (B − 1)2]global search ⇒ αbg = AαB
gmsis

Optimal linear combination:(
α1

α2

)
= K

(
α̃

∆αI

)
, K =

(
1 f2

2 /(f2
1 − f2

2 )
1 f2

1 /(f2
1 − f2

2 )

)

(
α̃

∆αI

)
=

(
αbg

〈∆αI〉

)
+ K†

(
α1 − αbg − 〈∆αI〉f2

2 /(f2
1 − f2

2 )
α2 − αbg − 〈∆αI〉f2

1 /(f2
1 − f2

2 )

)



Refractivity statistics against ECMWF



Refractivity → pressure & temperature

Refractivity equation:

N ≈ 77.6
p

T
+ 3.73× 105 e

T 2

• Two terms: a dry (or hydrostatic) term and a wet term

• The wet term can be neglected at temperatures less than

∼240 K (i.e., at few kilometers above the surface at high lati-

tudes and above ∼10 km at tropical latitudes)

Neglecting the wet term:

N(r) →
N = 77.6

p

T
, p = ρRdT

dp

dz
= −ρg , z = r − rcurv

→ p(z), T (z)



Deriving temperature and water vapor

1. Include additional information about the actual temperature

profile and solve directly for water vapor (iterative procedure)

2. One-dimensional variational technique optimally combining the

refractivity profile with information from an NWP model

3. The ’COSMIC approach’

Method number 1:
N(z), Tapriori(z)

↓

e = T 2N − 77.6(pd + e)/T

3.73× 105
,

d(pd + e)

dz
= −(ρd + ρw)g

pd = ρdRdT , e = ρwRwT

↓
e(z), pd(z)



An optimal solution toward T, p, and e

Method number 2 (variational retrieval):

• Include information about errors in a priori temperature, pressure

and water vapor, as well as errors in the observed refractivity

N(z), Tapriori(z), papriori(z), eapriori(z)

↓
Minimizing the following cost function:

J(x) = (x− xb)
TB−1(x− xb) + (Nobs −N(x))TR−1(Nobs −N(x))

x is the state vector to be solved for

xb is the a priori state vector

N(x) is the refractivity equation

B is the a priori error covariance matrix

R is the observation + representativeness error covariance matrix

↓
T (z), p(z), e(z)



The GRAS SAF approach

15.75 S, 6.48 W, 9 April 2009

• Observations and forecast weighted according to their error covariance

• An optimal mixture between model and observation

• One disadvantage: retrieved temperature and water vapor inconsistent
with observed refractivity



The COSMIC approach

Method number 3 (COSMIC approach):

• Gives much more weight to the observations

• Seeks to minimize the influence from NWP fields, but still separate out
temperature and water vapor

• Solution (almost) consistent
with observed refractivity

• Retrieved temperature (al-
most) in-line with dry temper-
ature where water vapor is in-
significant

• Observed small-scale struc-
ture is preserved in the solu-
tion



A similar alternative – taking the full step

• Give full weight to the observations (zero error; SO = 0)

• Solution fully consistent with observed refractivity (Nsol = Nobs)

• Retrieved temperature fully in-line with dry temperature where water
vapor is insignificant (Tsol = Tdry where e = 0)

• Information content from observation fully preserved

• NWP model add only information on the relative contributions of dry
and wet terms, based on its representation of these variables (xB) and
their error co-variances (SB)

• NWP analyses (where the specific RO profile presumably has already
been assimilated) can be used as xB without including the information
from the RO data twice (since the RO in itself does not contain infor-
mation about the relative contributions of dry and wet terms)

Standard 1Dvar: x = xB +SBKT(KSBKT +SO)−1(y−KxB) [notation after Rodgers (2000)]

Alternative: x = xB +SBKT(KSBKT)−1(y−KxB) = xA +SAKT(KSAKT)−1(y−KxA)



Microwave occultations

Atmospheric limb sounding (occultations) using multi-
frequency signals between LEO satellites

Observations:

1. Refraction (via phase measurements)

2. Absorption (via amplitude measurements)

Products: Profiles of temperature, pressure, water vapor, ozone, . . .

Frequencies:

• 9-32 GHz and 178-183 GHz for moisture sounding

• 184-196 GHz for ozone sounding



Absorption spectra below 200GHz



Basic principles of the observations

✲ ✲
T R

Earth

Tangent points
Optical path:

Optical depth:

L =

∫
nds

τ =

∫
kds

n is the real part of the refractive index

k is the volume absorption coefficient (related to
the imaginary part of the refractive index)

Normalized intensity: I/I0 = ζ exp(−τ )

The difference in optical depth, ∆τ , between two signals (at
two different frequencies) is obtained by signal intensity ratioing



Basic principles of the retrieval

• Inversion to obtain n and ∆k

L(t) → α(a) →

I(t) → ∆τ (a) →

n(r) = exp

(
1

π

∫ ∞

a

α(x)√
x2 − a2

dx

)

∆k(r) = − 1

π

da

dr

∫ ∞

a

d∆τ/dx√
x2 − a2

dx

a = rn(r)

→ n(r)

→ ∆k(r)

• Solving a set of non-linear equations to obtain profiles of p, e, T

∆k = F1(p, e, T ) n = F2(p, e, T ) dp/dz = F3(p, e, T )



Handling the integration to infinity

• Extending the bending angle profile; e.g., log-linear extrapola-
tion to infinity

• Integration to some high altitude where the bending angle can
be neglected (above 100 km)

• Analytical (approximate) expression assuming log-linear bending
angle above atop:∫ ∞

a

α(x)dx√
x2 − a2

≈
∫ atop

a

α(x)dx√
x2 − a2

+
α(atop)

√
πH

√
atop + a

exp
(atop − a

H

)
erfc

(√
atop − a

H

)

• An old idea of mine: Use background/climatological bending
angle defined to arbitrary high altitude (spectral representation)
and apply substitution (x =

√
a2 + (c ln y)2) to effectively integrate

to infinity: ∫ ∞

a

α(x)dx√
x2 − a2

= c

∫ 1

0

α(y)

xy
dy



. . . and the lower limit

We rarely talk about it, but we all do something:

• x =
√

a2 + (c ln y)2 ⇒
∫ ∞

a

α(x)dx√
x2 − a2

= c

∫ 1

0

α(y)

xy
dy ,

α(y)

xy

∣∣∣
y→0

→ 0

• α(x) = Ax + B ⇒
∫ b

a

α(x)dx√
x2 − a2

= A
√

b2 − a2 + B ln(
b +

√
b2 − a2

a
)

• integration by parts :

∫ ∞

a

α(x)dx√
x2 − a2

= −
∫ ∞

a
ln

(x

a
+

√(x

a

)2 − 1
)dα

dx
dx

• x =
√

s2 + a2 ⇒
∫ ∞

a

α(x)dx√
x2 − a2

=

∫ ∞

0

α(s)ds√
s2 + a2

• x = a cosh θ ⇒
∫ ∞

a

α(x)dx√
x2 − a2

=

∫ ∞

0
α(θ)dθ

• . . . and the one you use . . .



Example from GRAS data



A closer look . . .

Z ∞
a

α(x)dx√
x2 − a2

= c

Z 1

0

α(y)

xy
dy


